Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(4): 803-818, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36334073

RESUMO

Many viral infections cause acute and chronic neurologic diseases which can lead to degeneration of cortical functions. While neurotropic viruses that gain access to the central nervous system (CNS) may induce brain injury directly via infection of neurons or their supporting cells, they also alter brain function via indirect neuroimmune mechanisms that may disrupt the blood-brain barrier (BBB), eliminate synapses, and generate neurotoxic astrocytes and microglia that prevent recovery of neuronal circuits. Non-neuroinvasive, neurovirulent viruses may also trigger aberrant responses in glial cells, including those that interfere with motor and sensory behaviors, encoding of memories and executive function. Increasing evidence from human and animal studies indicate that neuroprotective antiviral responses that amplify levels of innate immune molecules dysregulate normal neuroimmune processes, even in the absence of neuroinvasion, which may persist after virus is cleared. In this review, we discuss how select emerging and re-emerging RNA viruses induce neuroimmunologic responses that lead to dysfunction of higher order processes including visuospatial recognition, learning and memory, and motor control. Identifying therapeutic targets that return the neuroimmune system to homeostasis is critical for preventing virus-induced neurodegenerative disorders.


Assuntos
Encéfalo , Viroses , Animais , Humanos , Barreira Hematoencefálica , Sistema Nervoso Central , Viroses/complicações , Astrócitos
2.
Genome Med ; 14(1): 108, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153630

RESUMO

BACKGROUND: Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. METHODS: Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. RESULTS: Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. CONCLUSIONS: We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos , Transcriptoma , Animais , Linfócitos T CD8-Positivos/metabolismo , Sistema Nervoso Central/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Ligantes , Camundongos , RNA/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Sinapses/metabolismo
4.
Brain Behav Immun ; 99: 383-396, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695572

RESUMO

Innate immune responses to emerging RNA viruses are increasingly recognized as having significant contributions to neurologic sequelae, especially memory disorders. Using a recovery model of West Nile virus (WNV) encephalitis, we show that, while macrophages deliver the antiviral and anti-neurogenic cytokine IL-1ß during acute infection; viral recovery is associated with continued astrocyte inflammasome-mediated production of inflammatory levels of IL-1ß, which is maintained by hippocampal astrogenesis via IL-1R1 signaling in neural stem cells (NSC). Accordingly, aberrant astrogenesis is prevented in the absence of IL-1 signaling in NSC, indicating that only newly generated astrocytes exert neurotoxic effects, preventing synapse repair and promoting spatial learning deficits. Ex vivo evaluation of IL-1ß-treated adult hippocampal NSC revealed the upregulation of developmental differentiation pathways that derail adult neurogenesis in favor of astrogenesis, following viral infection. We conclude that NSC-specific IL-1 signaling within the hippocampus during viral encephalitis prevents synapse recovery and promotes spatial learning defects via altered fates of NSC progeny that maintain inflammation.


Assuntos
Encefalite Viral , Células-Tronco Neurais , Febre do Nilo Ocidental , Humanos , Inflamassomos/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Febre do Nilo Ocidental/metabolismo
5.
J Immunol ; 206(12): 2937-2948, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34088770

RESUMO

Tissue-resident memory CD8 T cells (CD8 TRM) are critical for maintaining barrier immunity. CD8 TRM have been mainly studied in the skin, lung and gut, with recent studies suggesting that the signals that control tissue residence and phenotype are highly tissue dependent. We examined the T cell compartment in healthy human cervicovaginal tissue (CVT) and found that most CD8 T cells were granzyme B+ and TCF-1- To address if this phenotype is driven by CVT tissue residence, we used a mouse model to control for environmental factors. Using localized and systemic infection models, we found that CD8 TRM in the mouse CVT gradually acquired a granzyme B+, TCF-1- phenotype as seen in human CVT. In contrast to CD8 TRM in the gut, these CD8 TRM were not stably maintained regardless of the initial infection route, which led to reductions in local immunity. Our data show that residence in the CVT is sufficient to progressively shape the size and function of its CD8 TRM compartment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Colo do Útero/imunologia , Herpes Simples/imunologia , Vagina/imunologia , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Colo do Útero/efeitos dos fármacos , Colo do Útero/virologia , Feminino , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/imunologia , Humanos , Injeções Subcutâneas , Acetato de Medroxiprogesterona/administração & dosagem , Acetato de Medroxiprogesterona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Vagina/efeitos dos fármacos , Vagina/virologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...